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Technical This study analyzed the factors influencing the technical efficiency of maize
efficiency  of production among large-scale farms in Tanzania, using data from the
maize 2019/2020 National Sample Census of Agriculture. Analytical methods
production included correlation analysis, multiple linear regression, and the
among Large- stochastic frontier production function. Correlation results showed strong
scale farmers positive relationships between maize output and the costs of fertilizers
in Tanzania (r=0.92), improved seeds (r=0.93), and modern machinery (r=0.89), while

weaker correlations were observed with yield, agrochemical costs, and
labor inputs. Regression analysis indicated that increased investment in
improved seeds (1% increase leading to 63.1% rise in output), fertilizers
(43.6%), and modern machinery (30.6%) significantly boosts maize
production. Conversely, agrochemical costs and labor inputs negatively
affected output, suggesting inefficiencies and possible misuse. Stochastic
frontier results revealed that 48.69% of farmers operate with low technical
efficiency (scores between 0.1 and 0.3), largely due to inadequate farm
management, poor input access, and limited technical support. Around
43.46% fell into a moderate efficiency range (0.4-0.6), while only 7.85%
were highly efficient (0.7-0.9). The study concluded that most large-scale
maize farmers are not reaching optimal efficiency levels. It recommended
enhancing access to fertilizers, improved seeds, and modern machinery
through supportive policies and capacity building
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1.0 Introduction
1.1 Background

Maize (Zea mays), also known as corn, is a major global staple used for both human consumption
and animal feed. In 2022, the U.S. led global maize production with 349 million metric tons,
followed by China with 277 million and Brazil with 109 million metric tons (FAO, 2023). From
1961 to 2023, maize production in the U.S. steadily increased from 100 million to over 400 million
tons, despite occasional fluctuations. China started with about 20 million tons in 1961 and saw
rapid growth from the late 1990s, reaching over 280 million tons by 2023. India’s maize production
rose slowly from below 5 million tons in 1961 to around 40 million in 2023, possibly due to
challenges like small-scale farming, climate change, and limited infrastructure. Russia had
minimal maize production until the 1990s but began a moderate increase around 2000, reaching
15-20 million tons by 2023.

Figure 1: Trend of maize production of USA, China, India and Russia from 1961 to 2023

1961 1970 1980 1990 2000 2010
Source: (FAOSTAT, 2025)

The Americas lead global maize production with 50% of the total output, driven by advanced

technology and large-scale farming, followed by Asia (32%), Europe (11%), and Africa (8%). In



Africa, South Africa, Nigeria, Ethiopia, Egypt, and Tanzania are the top producers, with Tanzania
ranking fifth, contributing 7% of the continent’s maize output. Despite maize being grown
nationwide, Tanzanian production mainly from small-scale farmers suffers from low technical
efficiency due to poor farming practices, limited mechanization, and inadequate access to modern

inputs and extension services.

While large-scale farmers have more resources, they often underutilize them, resulting in
suboptimal yields compared to global standards. The government has launched initiatives like
ASDP Il and adopted policies emphasizing modern farming and research into drought-resistant
varieties, yet challenges such as regional disparities, post-harvest losses, and limited financial and
technical support persist. To enhance productivity, targeted interventions must address access to

technology, input quality, market linkages, infrastructure, and farmer training across regions

1.2 Statement of the Problem

Despite efforts to boost maize yield through large-scale farming, productivity in Tanzania remains
low, averaging between 1.5 and 2 tons per hectare well below the potential 4 to 6 tons per hectare.
This yield gap calls for effective strategies aligned with SDG 2 to improve maize production
efficiency. However, recent studies focusing on large-scale farmers have not fully explored the
factors affecting technical efficiency and spatial variability in maize production (Digest Tanzania,
2024), (Lelei, Sultan, & Kuboja, 2025) and (Lema & Temu, 2023). This study addresses this gap
by analyzing the technical efficiency of maize production among large-scale farmers using data
from the 2019/20 National Sample Census of Agriculture NBS (2021).

1.3 Objectives of the Study

1.3.1 Main objective

The study aimed at analyzing factors influencing technical efficiency of maize production across

of large-scale farmers in Tanzania.

1.3.2 Specific objectives
The specific objectives of this study were:

I.  To analyze spatial variation of maize production through large scale farming
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ii.  To determine factors influencing output of maize produced through large scale farming
iii.  To analyze technical efficiency levels of maize produced through large scale farming
iv.  To determine factors influencing technical efficiency of maize produced through large

scale farming

1.4 Research Questions
The research questions for this study are:

i.  What is the spatial distribution of maize production by large-scale?
ii.  Inwhat ways do technical efficiency levels of maize production differ across regions with
large-scale farming?
iii.  What are the key factors influencing maize output among large-scale farmers?
iv.  What socio-economic factors contribute to variations in maize productivity among large-

scale farmers?

2.0 Review of Theoretical and Empirical Literature
2.1 Production Theory

Production theory is an economic framework that explores the connection between inputs—such
as labor, capital, and raw materials—and the resulting output, emphasizing the efficient
combination of these inputs to produce goods and services (Ricardo, 1817). It describes how
producers optimize the use of resources to either maximize output or reduce costs. Typically, the
theory assumes a linear relationship between inputs and output, often represented by the Cobb-
Douglas production function (Cobb & Douglas, 1928), where output () is influenced by labor
(L), capital (K), and total factor productivity (A). Labor plays a critical role in agricultural tasks
like planning and harvesting, with greater labor input leading to improved efficiency and higher
yields (Grabowski, 2016; Torres, 2008). Capital, including machinery and technology, contributes
to production efficiency by mechanizing operations and enhancing infrastructure (Belgraver &
Verwaal, 2018). Various studies have utilized the Cobb-Douglas function to examine how
different production factors impact output (Hayami & Ruttan, 1985; Friedrich et al., 2009; Miller



& Upton, 1985; Awerbuch & Berger, 2003; Barro & Sala-i-Martin, 1995). This study applies

production theory to evaluate how inputs affect maize production.

2.2 Empirical Literature Review

2.2.1 Factor affecting maize production among large scale farms

Several studies have examined factors influencing maize production in different regions. Andisiwe
and Wang (2020) found that fertilizer, labor, and herbicide use significantly increased maize
production in South Africa, recommending subsidized inputs and improved extension services.
Njogu (2019) reported that land size, machinery use, and chemicals positively affected maize
production among small-scale farmers in Kenya, while extension services had a negative effect,
and seed and fertilizer application showed no influence. Mohammed (2021) identified income
from non-farm activities, input costs, and farm size as key factors affecting maize production in
Ethiopia, urging policymakers to promote maize cultivation and supply improved seeds and
fertilizers. Maguja and Mlilile (2023) analyzed Tanzania’s maize production over 61 years and
found cultivated area positively and significantly related to output, while fertilizer price and
expected maize price negatively influenced production; they recommended policies supporting
intensive agriculture, subsidies, and irrigation. Lastly, Utouh (2024) found farm size, irrigation
access, and improved seeds significantly impacted maize production in Tanzania, emphasizing the

need to improve smallholder farmers’ access to irrigation and modern inputs
2.2.2 Effect of social-economic factors on maize production among large scale farms

Different studies have explored the influence of socio-economic factors on maize production.
Msigwa (2018) found that household size, farm size, pesticide costs, and access to credit
significantly affected maize production in Tanzania, with mixed farming systems better adapting
to rainfall variability. The study recommended environmental education, expansion of mixed
farming, and formation of farmer cooperatives for affordable loans. Mogeni (2019) identified land
size, seed quantity, fertilizer and pesticide use, and credit access as positive influences on maize
productivity in Kenya, alongside factors like farming experience, extension services, and
education level; recommendations included improving input availability, tackling corruption, and
revising land tenure systems. Aakash (2019) reported that geographical location, household size,
cultivated area, sex, and education influenced maize yields in Tanzania, calling for further research

on income, credit access, labor, fertilizer quality, and market access. Adeola and Yusuf (2023)
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studied maize farmers in Nigeria and found age and education significantly impacted scale
efficiency, with high input costs being a major challenge; they recommended farmer education
and input subsidies. Zhexi and Jiashuo (2022) showed that climatic factors such as temperature
and precipitation positively affected maize output in China, along with labor and capital inputs;
they stressed the importance of climate prediction, farmer training, and irrigation projects to

support sustainable production

3.0 Methodology
3.1 Study Area

The study was conducted in Tanzania, a country in Eastern Africa bordered by several nations and
the Indian Ocean, with agriculture being a key sector for food security, employment, and economic
growth. Maize is one of Tanzania’s major crops and a vital income source for both smallholder
and large-scale farmers. Despite its importance, maize production faces significant challenges
related to technical inefficiency and low productivity. Tanzania’s diverse agroecological zones
make it an ideal location to assess environmental and technological impacts on maize production,
offering valuable insights for policy development to enhance agricultural sustainability. (Tanzania
Ministry of agriculture, 2015)

3.2 Research Design

This study used a quantitative research design to analyze factors affecting technical efficiency in

large-scale maize production in Tanzania (Utouh, 2024).

3.3 Sampling and Population

The National Sample Census of Agriculture (NSCA) gathered data on both small-scale farmers
(households) and large-scale farms. While data for small-scale farmers was collected using
sampling techniques, information on large-scale farms was obtained through complete
enumeration. Since this study focuses on large-scale maize farmers, no sampling method was

applied; instead, all relevant farms were included. Out of 1,093 large-scale farms recorded in



Tanzania, 306 were reported to have cultivated maize during the 2019/20 agricultural year (NBS,

2021), making up the total number of large-scale farms analyzed in this research.

3.4 Data Source

The study used secondary data obtained from National Sample Census of Agriculture 2019/20
agriculture year Report. (National Bureau of Statistics, 2020). This survey provides credible data
that answered objectives regarding factors affecting technical efficiency of maize by large-scale

farms.

3.5 Data Analysis
3.5.1 Descriptive statistics

Descriptive analysis involved measures of central tendencies and dispersion as well. The study
used descriptive statistics such as means, percentages, standard deviation and frequency tables and
charts. statistics used to describe the central tendencies and measures of dispassion of data such

mean, maximum, minimum and standard deviation.

3.5.2 Correlation

Correlation analysis used to assess the extent or strength of the relationship between variables.
Based on this study, Pearson correlation was used to see how the amount of maize harvested is
related to other influencing factors, also how each factor relating to another factor.
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r = Peason correlation coefficient
x; y; = individual data points in variables X and Y,
X, y = means of variables X and Y
Cov(X,Y) - covariance between X and Y
oy .0y - Standard deviations of X and Y
The value of r ranges from -1 to +1



If r=1, then perfect positive correlation, this indicating that once a unit of one variable increase
also other related variable increase, if r = -1, then perfect negative correlation, this indicating that
once a unit of one variable increase, other related variable decrease also if r = 0, then no linear

correlation, there is no linear relationship between variables

3.5.3 Regression analysis

Regression is a broad statistical technique used to model and analyze the relationship between a
dependent variable (Y) and one or more independent variables (X). Th Studies of Aakash (2019);
Mohammed (2021); Temotf and Ethel (2023); and Utoch (2024) applied to analyse the association
between independent and dependent variables. A regression model with a single independent
variable is referred to as a Linear Regression model, while one with multiple independent variables

is known as a Multiple Regression model.
The regression model was specified as:
Where:
Yi is the variable of interest (response/dependent)
PO is the Intercept (constant)
pi is the Coefficients of Xi or slope of associated with each predicted variable
Xi is the vector of the predictor variable
ei is the Error term,

Additionally, the objective of regression analysis in this study was to estimate the coefficients So,

B, ..., Bx, and suitable methods is Ordinary Least Squares (OLS), since it minimizes the sum of



the squared differences between the actual observed values of the dependent variable (Y) and the

values predicted by the model

3.7.4 The stochastic frontier production function.

The Stochastic Frontier Production Function (SFPF) is a model used to assess production
efficiency by separating output variation into two components: random error and technical
inefficiency (Aigner, 1977). The random error term (Vi) captures unpredictable factors like
weather, pests, and measurement errors, assumed to follow a normal distribution with a mean of
zero. The inefficiency term (Ui) represents the degree to which a farm operates below its potential,
modeled with a truncated normal distribution, where the mean is influenced by farm-specific

variables (Zi) and associated parameters (5).

The production output for a farm is a function of various inputs such as land, labor (permanent and
temporary), seed types (local and improved), machinery value, credit, and other inputs like
agrochemicals. The model distinguishes between actual output (Yi) and *potential (frontier)
output (Yi)**, where technical efficiency (TE) is the ratio of the two. If Ui = 0, the farm is fully
efficient; if Ui > 0, it is technically inefficient (Dey et al., 2000).

In the second stage of analysis, sources of inefficiency are explored using variables such as use of
improved seeds, gender of workers, access to credit, land ownership, environmental conservation
practices, irrigation, and extension services. Each variable's effect on inefficiency is analyzed
through a model where parameters (3;) indicate the strength and direction of influence

4.0 RESULTS AND DISCUSSION
3.1 Descriptive Statistics of the Studied Variables

The results figure 2 show the frequency distribution of large-scale farms in Tanzania mainland by
region, The total number of observations were 306 farms, the results show that, the highest number
of large-scale farms reported in Mbeya (19 farms equivalent to 6.2 percent), followed by Iringa
(18 farms equivalent to 5.9 percent), Rukwa and Ruvuma regions with 17 farms equivalents to 5.6
percent each. Also figure 2 show that, lowest number of farms reported in Dar es salaam with

only 3 farms equivalents to 1.0 percent, followed by Mtwara with 5 farms equivalent to 1.6 percent
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and Lindi 6 farms equivalent to 2.0 percent. In general 73 percent of all regions have farm greater
than 9 and the 27 percent have less than 9 farms

Figure 2: Frequency distribution of large-scale farms by region
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Also, the results in Table 1 the study found that only 44.1% of large-scale maize farms used
irrigation, reflecting a high dependence on rainfall and exposure to climate risks—similar to
Grassin et al. (2011), who reported irrigation rates below 47% for cereal crops. Male workers made
up 64.99% of the agricultural labor force, indicating a persistent gender gap, supported by Sawe
(2018), and pointing to the need for gender-inclusive agricultural policies. Sustainable farming
practices were adopted by 59.2% of farms, while 40.8% did not, suggesting the need for policy
incentives to promote environmental conservation. Private ownership dominated at 80.7%,
aligning with national trends and indicating the importance of supporting private farm investments.
Financially, 91.5% of farms relied on loans, with only 8.5% operating without borrowing,
reflecting limited internal capital. This trend parallels findings by Hoppe et al. (2021), who
observed that credit dependence accounts for up to 95% of U.S. farm debt. Overall, key areas for

policy focus include irrigation, gender equity, sustainability, ownership support, and farm
financing.

Table 1: Frequency and Percentage Distribution of Categorical Variables

Variables Categories Frequency Percent
Irrigated 135 44.1
Not irrigated 171 55.9

Farms Irrigated Total 306 100
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Male 2445 64.99
Female 1317 35.01
Sex Total 3762 100
Yes 181 59.2
No 125 40.8
Environment Conservation Total 306 100
Government 59 19.3
Private 247 80.7
Farm Ownership Total 306 100
Number of Farms borrowed Borrowed 280 915
Not Borrowed 26 8.5
Total 306 100

Source: Author’s compilation (2025)

The results in Table 2 show that large-scale maize farms had an average harvest of 504 tons, with
a range from 30 to 18,066 tons. The average maize cultivation area was 303 hectares, ranging from
20 to 8,047 hectares. Average yield was 1.7 tons per hectare, with yields ranging from 1.1 to 2.2
tons/ha, aligning with NSCA (2007/08) estimates of 1.7—-2.8 tons/ha. On average, farms spent 10.7
million TZS on fertilizer, 42.9 million TZS on modern machinery, and 24.1 million TZS on
agrochemicals. The mean cost of improved seeds was about 5.66 million TZS, with a wide
variation between 100,000 and 115 million TZS. The average number of employees per farm was
73, with a maximum of 5,136; permanent employees averaged 16 and temporary 57. For irrigated
farms, the average maize harvest was 741.7 tons, while unirrigated farms harvested an average of
6,705.7 tons. Farms using both irrigation types had a mean harvest of 7,446.6 tons. Mean yield
from irrigated areas was 2.91 tons/ha, unirrigated areas had 2.98 tons/ha, and the overall yield

averaged 2.89 tons/ha, indicating relatively similar performance across irrigation types

Table 2 Summary statistics for the quantitative data variables
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Variable Unity Mean Std. dev. Min Max

Quantity Harvest Tons 504 1,485 30 18,066
Planted Area Ha 303 723 20 8,047
Yield Ton/Ha 1.7 2.1 1.1 2.2
- 10,700,00
Fertilizers cost TZS 0 21,700,000 103,800 296,000,000
Modern machines 42,900,00
TZS 32,800,000 17,800,000 532,000,000
cost 0
) 24,100,00
Agrochemicals cost TZS 0 28,000,000 25,000 101,000,000
Improved seeds cost TZS 5,656,930 10,000,000 100,000 115,000,000
Numbe
Total employees 73 324 5 5,136
r
Permanent Numbe
16 62 1 954
employees r
Temporary Numbe
57 309 4 1,130
employees r

Source: Author’s compilation (2025)

3.2 Correlation Analysis

The results from Table 4.3 reveal strong positive correlations between the quantity of maize
harvested and key input costs, based on 306 observations. The strongest correlation was found
between harvest quantity and improved seed costs (r = 0.93), followed by fertilizer (r = 0.91) and
modern machinery (r = 0.89), suggesting that increased investment in these inputs significantly
boosts total output. These findings align with previous studies, such as those by Mdoda et al.
(2025), Ragasa et al. (2025), and Majebele et al. (2025), which highlight the positive impact of
improved inputs and mechanization on maize yield. Conversely, weak correlations were observed
between harvest quantity and yield per hectare (r = 0.22), labor inputs (r = 0.07-0.12), and
agrochemical costs (r = 0.07), indicating that productivity gains are more related to expanded
cultivated areas and input intensity rather than efficiency. Moreover, strong inter-correlations
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among input costs such as improved seeds vs. fertilizer (r = 0.95) and fertilizer vs. machinery (r =
0.93) show that these inputs are closely linked and often used together to drive higher production.
This supports findings from Kirui & von Braun (2019) and Roman Hadi & Wuepper (2024), who
observed that mechanization tends to increase both land use and input application. Overall, the
findings suggest that maize production is heavily driven by capital-intensive inputs, while labor
plays a limited role, likely due to mechanization. However, the low correlation with yield per
hectare points to inefficiencies in input use and a reliance on land expansion rather than improved

productivity

Table 3: Pearson Correlation analysis

QMP YLD VFU VAGC VMM VIS TNE NPE NTE
QMP 1
YLD 0.22 1
VFU 092 0.07 1
VAGC 007 0.3 0.06 1
VMM 089 003 093 008 1
VIS 093 009 095 005 0.86 1
TNE 007 001 010 -0.08 010 0.08 1
NPE 005 001 008 -0.06 0.08 0.06 0.98 1
NTE 012 001 013 -009 0.13 0.12 033 014 1

Source: Author’s compilation (2025)

3.3 Determining the Spatial Variation of Maize Production by large-scale in Tanzania

Figure 3 shows that maize harvest quantities vary by region, with the Southern Highland including
Rukwa, Mbeya, Songwe, Ruvuma, Njombe, and Iringa producing the highest amounts, ranging
from 11,439.9 to 19,432 tons. Regions like Morogoro, Katavi, Tanga, Manyara, Simiyu,
Shinyanga, and Kigoma had moderate production, between 6,766.3 and 11,439.8 tons. The lowest
production levels were seen in Mtwara, Lindi, Pwani, Dar es Salaam, Dodoma, Geita, and Singida,
with outputs ranging from 22.3 to 5,000 tons. A similar study by Mundia et al. (2021) supported

these findings, using GIS and spatial analysis to map maize productivity across Tanzania. That
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study also identified the Northern and Southern Highlands as top producers, while coastal and
western regions showed lower productivity. The spatial distribution reflects differences in agro-
ecological conditions, infrastructure, and farming practices. The use of geographic tools, like GPS
and thematic maps, provided clearer insight into regional productivity patterns. These results
highlight the importance of location-specific interventions to boost maize vyields in
underperforming areas. Overall, regional disparities suggest that agro-ecological potential and

resource access significantly influence maize production across Tanzania.

Figure 3: Spatial Variation of Maize Production by Large-scale in Tanzania

Rwanda

o Y,
- . sSingida oo ot
2 Y 21,0311 [/ Dodoma i & Feune
Y / j 801.8 P

DR Congo

Dar-¢ laam
22

L7
v i

f Pwani /[
Pl 6504 [

Legend

== |nternational Boundary|
: = Regional Bounda
Zambia ¢ 4
Quantity Harvested (Tons)
22.3-5,000.0

5,000.1 - 6,766.2
6,766.3 - 11,439.8

- 11,439.9 - 19,432.0

1:7,000,000
ML L IKilometers
037575 150 225 300

Mozambique

Source: Author’s compilation (2025)
3.4 Factors affecting output of maize produced by large-scale farmers

The results presented in table 4 indicate that the model is highly significant in estimating the factors
influencing maize production. The value of the coefficient of multiple determination (R?) is

0.9294, meaning that 92.94% of the total variation in the dependent variable (output) is explained
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by the independent variables included in the model. Therefore, the model provides a good fit for
the data.

Table 4 OLS estimates for parameters of the Cobb-Douglas production function for Maize

Lnoutput Parameters Coefficient Std. err. t

Lnfertilizerscost B1 0.436*** 0.045 9.65
Inmodernmachinescost B2 0.306*** 0.102 3

Inagrochemicalscost B3 -0.023* 0.013 -1.8
Lnimproved seeds cost B4 0.631*** 0.048 13.12
Lnlabour B5 -0.035** 0.015 -2.26
Constant B0 -15.611%** 1.570 -9.94

Note: Significance levels of 1%, 5%, and 10% are indicated by ***, ** and *

respectively.

Source: Author’s compilation (2025)

R? = 0.9294

Adjusted R?= 0.9282

The regression results indicate that input costs for improved seeds, fertilizer, and modern
machinery have a significant and positive impact on maize output. Specifically, a 1% increase
in fertilizer cost leads to a 43.6% rise in output, reflecting efficient fertilizer use, as supported
by studies like Ragasa and Chapoto (2017). Improved seeds show the strongest effect, where
a 1% cost increase results in a 63.1% rise in output, while modern machinery contributes a
30.6% increase. In contrast, agrochemical costs negatively affect output a 1% increase leads
to a 2.3% decline possibly due to overuse or poor application practices. Labor input also
shows a negative effect, with a 1% increase reducing output by 3.5%, suggesting inefficiency
in labor utilization. Overall, the Cobb-Douglas production function reveals that seed and

fertilizer investments are the most productive, while labor and agrochemicals reduce
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efficiency. The estimated return to scale is 1.315, indicating increasing returns, doubling all
inputs would more than double the output emphasizing the importance of efficient input

management to enhance maize productivity

3.5 Analysis of technical efficiency levels of maize produced across regions with large-scale

farmers

The results in Table 4.5 present maximum likelihood (ML) estimates from a Cobb-Douglas
stochastic frontier production function for maize, showing the model is highly significant in
identifying factors influencing maize production. Fertilizer cost, modern machinery cost, and
improved seed cost were all positive and statistically significant at the 1% level, indicating these
inputs are elastic meaning a 1% increase in each lead to a corresponding 1% increase in output.
Among them, improved seeds had the greatest impact, with an elasticity of 0.631, followed by
fertilizers (0.436) and modern machinery (0.306). This highlights the critical role of these inputs
in boosting maize production. Conversely, labor and agrochemical costs were negatively
associated with output, with elasticities of —1.000 and —1.000 respectively, and were significant at
the 5% and 10% levels, suggesting inefficiencies or mismanagement in their use. These findings
are supported by Biswas et al. (2022), who found similar elasticity values in a Cobb-Douglas
model for maize in Bangladesh—confirming the strong positive effects of fertilizer, improved
seeds, and machinery, and negative impacts from labor and agrochemicals. Additionally, the
estimate for gamma (y) was 0.002 (0.2%), implying that only a small portion of the variation in
maize output is due to technical inefficiency, with the vast majority (99.8%) explained by random
shocks. However, the large standard error (0.156) indicates that y is not statistically significant.
Similar results were reported by Abdulai & Tietje (2007) and Deribe et al. (2022), who found that
most output variation in stochastic frontier models stems from random factors rather than

inefficiency

Table 5: ML estimates for the parameters of the Cobb-Douglas stochastic frontier

production function of Maize

Lnoutput Parameters Coefficient Std. error. z
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Constant B0 -15.606*** 1.575 -9.91

Infertilizerscost B1 0.436*** 0.045 9.74
Inmodernmachinescost B2 0.306*** 0.101 3.03
Inagrochemicalscost B3 -0.023* 0.013 -1.81
Inimprovedseedscost B4 0.631*** 0.048 13.25
Lnlabour B5 -0.035** 0.015 -2.28
Constant B0 -15.606*** 1.575 -9.91
y 0.002 0.156

o? 0.198 0.034

Log Likelihood -185.96477

Note: Significance levels of 1%, 5%, and 10% are indicated by ***, ** and *

respectively

Source: Author’s compilation (2025)

3. 6. Effect of socio-economic factors on maize production among large-scale farmers

Table 4.6 presents the maximum likelihood estimates identifying the socio-economic determinants
of technical inefficiency among maize producers. In this inefficiency effects model, negative
coefficients indicate increased efficiency, while positive ones suggest greater inefficiency. Farm
size shows a positive but statistically insignificant coefficient (0.007), implying a weak link
between larger landholdings and efficiency, consistent with Alene and Hassan (2003), who found
mixed results depending on context. Farm ownership has a significant positive effect (0.049),
suggesting that private landowners are more efficient due to stronger investment incentives—a
finding aligned with Ogunwusi and Oladele (2024). Environmental conservation practices yield a
negative but insignificant coefficient (—0.007), indicating no clear efficiency impact, which is
consistent with Dang (2017), who noted similar results. The constant term (0.322), significant at
the 1% level, suggests a baseline technical efficiency of 32.2%, highlighting the presence of
unexplained inefficiencies, as also observed by Dang (2017) and Esham (2014)

Table 6: Maximum likelihood estimates (MLESs) of determinants of technical efficiency of

Maize. Production
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TE Parameters Coefficient Std. err. t

Infarmsizeinha2 64 0.007 0.006  1.13
Farm ownership (Private) &, 0.049** 0.024 2.04
Environmental conservation (Dummy) O3 -0.007 0.019 -0.35
Constant & 0.322*** 0.033 9.63

Note: Significance levels of 1%, 5%, and 10% are indicated by ***, ** and

* respectively.

Source: Author’s compilation (2025)

3.7. Technical Efficiency Levels of Maize Production

A score of with 0, this is totally inefficiency and also if the score is 1.0 indicate perfect efficiency,
when the score is close to 1.0 this indicating high efficiency. On the other hand, if the technical

efficiency score is close to 0 this indicating low efficiency

Table 7: Frequency distribution of technical efficiencies of maize growers

Efficiency Level Technical Efficiency Frequency  Percent
Low Efficiency 0.1-03 149 48.69
Moderate Efficiency 04-0.6 133 43.46
Highly efficient 0.7-1.0 24 7.85
Total 306 100
Mean 102
Minimum 10%
Maximum 90.0%

Source: Author’s compilation (2025)

Table 4.7 illustrates the distribution of technical efficiency (TE) scores among 306 maize farmers,

revealing substantial inefficiencies in production. The scores range from 0.1 to 0.9, indicating how
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closely farmers operate to the production frontier. Nearly half of the farmers (149 individuals or
48.69%) had TE scores between 0.1 and 0.3, suggesting that many operate at less than 40% of
their potential, possibly due to factors such as poor farm management, lack of quality inputs,
inadequate extension services, and limited technical know-how. Another 133 farmers (43.46%)
fell within the moderate efficiency range of 0.4 to 0.6, showing some productive capacity but still
considerable room for improvement. Only 24 farmers (7.85%) achieved high efficiency, with
scores between 0.7 and 0.9, indicating proximity to optimal resource utilization. These findings
align with earlier studies; for example, Masuku et al. (2021) found TE scores from 2% to 84%
among 400 Zambian maize farmers, with 14% scoring below 30% and 14% above 70%. Similarly,
Bempomaa and Acquah (2014) observed an average TE of 67% among 306 maize farmers in
Ghana, implying a 33% efficiency gap. These comparisons reinforce the current study's conclusion
that most farmers remain below the production frontier due to inefficiencies not entirely explained

by observable variables.

4.0 CONCLUSION AND POLICY IMPLICATIONS

The study found significant spatial variation in maize production across Tanzania, with the
Southern Highlands—notably Rukwa, Mbeya, Songwe, Ruvuma, Njombe, and Iringa—recording
the highest outputs, while regions like Mtwara, Lindi, and Dar es Salaam had the lowest. Key
factors positively affecting maize production included fertilizers, improved seeds, and modern
machinery, all significant at the 1% level, whereas agrochemicals and labor negatively impacted
output at 10% and 5% significance levels, respectively. Improved seeds had the strongest influence
on output with a coefficient of 0.631, followed by fertilizers (0.436) and modern machines (0.306),
confirming their role in increasing productivity and efficiency. Conversely, an increase in
agrochemical uses and labor led to declines in efficiency, suggesting overuse or inefficiency in
their application. The inefficiency analysis showed that technical inefficiency accounted for only
0.2% of output variation, while 99.8% was due to random shocks, indicating external factors play
a larger role in production variability. Lastly, efficiency levels revealed that 48.69% of farmers
operated at low efficiency, 43.46% at moderate, and only 7.85% at high efficiency, pointing to a

need for better education, access to inputs, and extension services to improve productivity.
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The study recommends that policymakers improve access, affordability, and distribution of key
agricultural inputs—such as fertilizers, improved seeds, and modern machinery—through
subsidies, better supply chains, and stronger extension services to boost maize productivity. It also
calls for increased investment in large-scale farming, focusing on easing capital constraints and
promoting efficient input use, while addressing the negative impacts of labor and agrochemical
misuse through training, education, and technology adoption. Finally, to enhance overall technical
efficiency—particularly among the nearly 49% of low-efficiency farmers—the study urges
support for capacity-building, agricultural financing, and farmer cooperatives, with further
research needed on infrastructure, market access, climate change, and post-pandemic impacts on

maize production
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